

Dynamic Modeling and Controls Research for Biologically Inspired Micro Aerial Vehicles

NASA Langley Research Center

David L. Raney, Martin R. Waszak

Dynamics and Control Branch d.l.raney@larc.nasa.gov, m.r.waszak@larc.nasa.gov

Ref: AIAA 2003-5345, 2002-4875, 2001-4005

What are Micro Aerial Vehicles?

The Promise of MAVs

An emerging sector of aerospace industry with potential to become a consumer product

Rapidly Deployable "Eye in the Sky"

- traffic/news/sports
- inspection
- reconnaissance

Delivery/Transmission/Relay

- micro payloads
- communications

Remote Distributed Sensing

- agriculture/forestry
- atmosphere/weather
- search & rescue

Approach to Fixed-Wing MAV Research

Cooperative

Controller

Research swarming / cooperative control of collaborative systems using simulation and flight test

- Flight test control algorithms

University of Florida MAV

poc: Peter Ifju, ifju@ufl.edu

Maximum Dimension 6 inches
Empty Weight 55 grams
Span 6 inches
Wing Area 20 inches²
Mean Chord 3.3 inches
Cruise Speed 10 - 30 mph
Payload Weight ~20 grams
Flexible Latex & Graphite Epoxy Wing

Adaptive Washout

Response to periodic axial velocity perturbations.

"Chopper" (U of F Wind Tunnel)

BART Wind Tunnel Test Configuration

Stability and Control Forces
& Moments
Flow Visualization
PMI for Wing Deformation
Wing Structure Variations

Conditions: q = 1.6 psf (25 mph) $p = 12V (\sim 18000 \text{ rpm})$ $\alpha -5 \text{ to } 45 \text{ degrees}$

Measuring Wing Shape

poc: Gary Fleming, g.a.fleming@larc.nasa.gov

Streamlined Fuselage Effect

(q=1.6 psf, power off, 6-batten wing)

Static Aeroelastic Effects (q=1.6 psf, power off)

- Similar lift curve slopes comparable to other low Reynolds number wings with similar aspect ratio
- Significant increases in stall angle with increased flexibility
 stall angles comparable to other low Reynolds number wings with much lower aspect ratio

Stability and Control Properties

(q=1.6 psf, trim power, 2-batten wing)

Static Stability

$$C_{m_{\alpha}} = -0.6$$

$$SM \approx \frac{C_{m_{\alpha}}}{C_{L_{\alpha}}} = 0.15$$

$$C_{n_{\beta}} = 0.5$$

$$C_{l_{\beta}} = -0.7$$

statically stable in all axes

static derivatives somewhat larger than typical piloted aircraft

$$\begin{array}{c} C_{L_{\delta}} = 0.7 \\ C_{m_{\delta}} = -0.4 \end{array} \right\} \quad \begin{array}{c} C_{L_{\delta}} \\ \overline{C_{m_{\delta}}} = -1.75 \end{array} \quad \begin{array}{c} \text{characteristic} \\ \text{of flying wing} \end{array}$$

$$C_{Y_{\delta}} = -0.10$$

$$C_{l_{\delta}} = 0.08$$

$$C_{n_{\delta}} = 0.06$$

Flight Dynamic Simulation Model

Simulation/ Vehicle Characteristics

Dynamic Pressure (psf)	Phugoid Mode		Short Period Mode	
	freq. (rad/sec)	damping ratio	freq. (rad/sec)	damping ratio
1.0	0.85	0.44	23.3	0.13
1.6	0.65	0.35	30.2	0.12
2.0	0.67	-0.56	32.6	0.12

- Stable but lightly damped short period mode
- Phugoid unstable at higher speeds

- All lat-dir modes stable
- Lightly damped dutch roll mode

Dynamic Pressure (psf)	Spiral Mode	Roll Mode	Dutch Roll Mode	
	e-value	e-value	freq. (rad/sec)	damping ratio
1.0	-1.04	-27.7	21.1	0.094
1.6	-1.04	-37.3	24.2	0.065
2.0	-1.02	-42.8	25.9	0.050

Dynamic Inversion Controller Performance

poc: John Davidson, j.b.davidson@larc.nasa.gov

√ Test > Modeling/Simulation > Autonomous Single Vehicle >> next: Collaborative Multiple Vehicles

Bio-Inspired Principles from Diverse Examples of Flapping Flight

Sensing

Tractable Flapping Wing Design

Many natural fliers generate lift through resonant excitation of an aeroelastically tailored structure:

Muscle tissue

Mode shape

Propulsive lift

The humming bird as a starting point:

- the right size
- the right capabilities
- tractable example

ref: Greenwalt, 1960

NASA

Where to Start?

Scaling relationships

Wing Length vs.
Total Weight

Patagona gigas (Giant Andean)
Length of wing ~ 12 cm
Flapping frequency ~ 8 -10 Hz
Weight ~ 20 g

 $W \sim 1 ^{(3/2)}$

fl $^{\land}$ (1.25) = const.

Lampornis clemenciae (Blue Throat) Length of wing ~ 8.5 cm Flapping frequency ~ 23 Hz Weight ~ 8.4 g

ref: Greenwalt, 1960

MicroBat (Aerovironment)
Length of wing ~ 7.6 cm
Flapping frequency ~ 20 Hz
Weight ~ 12.5 g

Approach

Apply UF MAV structure to bio-inspired wing layouts
Build series of vibratory testbeds & simulation models
Excite aeroelastic/structural dynamic modes to produce
large-amplitude resonant flapping behavior

- Investigate parametric variations of wing layup
- Develop/ refine mechanization concepts
- Achieve control of resonant wingbeat kinematics

Hardware-in-the-loop dynamic simulation & control

Progression of Resonant Flapping Testbeds

EM Vibration Inducer ('99-'00)

- Basic proof-of-concept
- OL frequency sweeps/ resonant frequencies
- Structures/ Materials

Piezo Ceramic ('00-'02)

- Strain rate feedback/ resonant tuner
- Vacuum chamber tests
- Parametrics & flow vis

Dual Shakers ('02-'03)

- Wingtip trajectory traces
- 3-DOF shoulder joint
- Control of wing- beat pattern
- Actuator specs

Magnetically-Actuated Resonant Flapping Testbed used to Excite Aeroelastic Wing Structures

- 0.26gm vs. 0.59gm
- radial battens
- stiffness distribution

- Achieved 20 deg flapping arc at ~ 25 Hz (Relatively low flapping amplitude)
- Resonance coincides with hummingbird flapping frequency for this size
- Kinematics are currently an arbitrary result of cut & try composite layup; Would prefer to specify desired kinematics and solve for required layup
- Generated smoke flow visualization of unsteady aero phenomena

Piezo-Actuated Flapping Testbed

Piezoelectric

thunder actuator

used to excite

structural vibration

at ~25 Hz

- Much larger amplitude flapping motions achieved with piezo actuation
- Power consumption: 0.46 W; Blue throat in hover: 0.17 W 0.34 W
- Flow visualization indicates unsteady vortex structures that are suggestive of "vortex capture" phenomenon exploited by insects as postulated by Dickinson, (*Science, vol 284, 18 Jun 99*)

Resonant Tuning using 28 μ m PVDF Strain-Rate Sensor

- Bio Inspiration reference: R. Dudley, <u>Biomechanics of Insect Flight</u>
- Hardware-in loop feedback controller implemented using dSpace system
- Closed loop system exhibits limit cycle at resonant frequency of aeroelastic wing & actuator system

Response of Resonant Flapping System to Ambient Pressure Variation

- Bell jar enables closed-loop structural dynamic testing under time-varying pressure conditions
- Closed-loop system tracks change in modal frequency with pressure variation
- Change in resonant frequency is approximately 1.1Hz for 20" mercury

Resonance tracking using 28 μ m PVDF thin-film sensor with flexible wing

Variable Wingbeat Patterns for Agile Flight

ref: Greenwalt, 1960

Agility and precision are achieved through coordinated control of resonant wingbeat kinematics and tail effector deployments; flight dynamics and flapping dynamics highly coupled

Shaker-Actuated Vibratory Flapping Testbed

Biological Inspiration*

3-DOF shoulder joint permits large amplitude flapping arc & control of wingbeat pattern

LEDs trace out wingtip trajectory

Strobe reveals flexible wing behavior >> Application of resonant tuning circuit

^{*} Cummins J.: Notes on Avian Anatomy webpage, April 1 1996, resketched from Freethy R., 1982: How Birds Work, A Guide to Bird Biology. 1st ed. Poole: Blanford Press. (http://numbat.murdoch.edu.au/Anatomy/avian/shoulderl.GIF)

Open-Loop Sinusoidal Input Frequency Sweeps Reveal Resonant Flapping Frequency

- Output of strain rate sensor is maximized at resonance
- Closed-loop system automatically tunes to this frequency
- Feedback signal can be modified to alter wingtip trajectory

Means of Varying the Wingbeat Pattern

Example Actuator Inputs, mV Blue=Shaker A, Green=Shaker B

- 1 Stroke Inclination: vary relative amplitude
- 2 Ellipse: vary relative phasing
- 3 <u>Figure 8</u>: superimpose 2nd sinusoid@ 2 x freq. of fundamental resonance

Wingbeat Patterns for Various Flight Modes

High-Speed Cruise

Hover

Low-Speed Cruise

Reverse

Factors to match

Wingbeat amplitude
Strokeplane inclination to body axis
Approximate wingtip trajectory
Sense of rotation

Towards Hardware-in-Loop Flight Dynamic Simulation of an Agile Ornithoptic MAV

Other Contacts & Collaborations

Aeroelasticity Branch (SMC) - R. Lake

- Inverse Aeroelastic Design

Advanced Materials Branch (SMC) - K. Pawlowski

- Electrostrictive Polymer Actuators

Config. Aero Branch (AAAC) - P. Pao

- Unsteady Aero

- "Wasp", "Black Widow", "Microbat"

UC Berkeley - R. Dudley

- Dept Int. Biology & "MFI" lab

USC - G. Spedding

Duke - N. Chokani & **U. Colorado** - K. Park

- LARSS students & LaRC vibratory apparatus

8th International MAV Competition

U of Arizona/ Brigham Young University/ Cal Tech/ U of Florida/
GA Tech/ Aachen University, Germany/ Konkuk University, S. Korea, ...

